Linear Algebra Done Right第十章注记和部分习题

L\inear Algebra Done Right 还有一章总结没有写,现在我的主要数学精力已经转向了另一个更为有趣的方向:复分析,读的是早已经买回的书《复分析,可视化方法》。这是一本读来让人心潮澎湃的书,曾经读了这本书的第一章,开设这个博客很大一部分原因还是想写写读这本书时的一些感受和记录它当中的问题。但三年多没有碰过数学我的数学能力已经回退到最原始状态了。它的译后记中说需要读者"比较认真地读过微积分和线性代数",可是不光线性代数方面本来当初学得就不扎实,就连几年前十分拿手的数学分析我也基本上忘光了(当然初等微积分还记得一些)。我想务必要让自己的数学能力恢复一下再来读这本书,所以后来就读了《L\inear Algebra Done Right》并作了这些札记。

注记部分:

1 一个线性变换可以表示成  ST-TS (其中  S T 也是线性变换)的充要条件

我们知道一个变换如果可以写成两个线性变换的运算  ST-TS 的形式,因为  \mathrm{trace}\,(ST-TS)=0,那么这个线性变换就必须也满足迹为零。但是,是否只要满足这一个条件就够了呢?

这个问题我发在了百度贴吧中,不久被"四元数"解答了,讨论过程见
http://tieba.baidu.com/f?kz=847919631

需要补充的是他提出的另外一个命题:任何一个 trace 为 0 的矩阵都相似于一个对角线上都是 0 的矩阵,或者说,trace 为 0 的线性变换在某组基底下的矩阵其对角线上的元素都为 0。

我们先对二阶矩阵证明一个更强的命题:

命题1:对于一般的2阶方阵,如果这个方阵不是单位阵或单位阵的倍数,那么必然可以相似于一个在对角上含有 0 的矩阵。
证明:设这个方阵为

 \begin{pmatrix}a&b \\ c&d\end{pmatrix}

如果  a,d 其一为 0 则命题得证。故以下假设  ad\not=0
如果  b=c=0,那么可以断定  a\not=d,我们考虑以下相似变换

 \begin{pmatrix}1&k \\ 0&1\end{pmatrix}\begin{pmatrix}a&0 \\ 0&d\end{pmatrix}\begin{pmatrix}1&-k \\ 0&1\end{pmatrix}=\begin{pmatrix}a&kd-ka \\ 0&d\end{pmatrix}

 k\not=0 即可把右上角元素变为非零。故以下假设  b\not=0。那么考虑以下相似变换

 \begin{pmatrix}1&0 \\ -k&1\end{pmatrix}\begin{pmatrix}a&b \\ c&d\end{pmatrix}\begin{pmatrix}1&0 \\ k&1\end{pmatrix}=\begin{pmatrix}a+kb&b \\ c-ka+kd-k^2b&d-kb\end{pmatrix}

由于  b\not=0,那么我们总能取到适当的  k 使得  a+kb=0 c-kb=0。证毕。

再往下就可按照"四元数"说的方式证明结论。

部分习题解答:

8 V 是内积空间且  v,w\in V。定义  T\in\mathcal L(V) Tu=\langle u,v\rangle w,找到  \mathrm{trace}\,T 的表达式。
解1:首先注意到如果  e_1,\dots,e_n V 的标准正交基底,那么

 \mathrm{trace}\,T=\sum_{i=1}^n\langle Te_i,e_i\rangle

 e_1=w/|w|,将其扩充成标准正交基底  e_1,\dots,e_n,那么

 \mathrm{trace}\,T=\sum_{i=1}^n\langle Te_i,e_i\rangle=\langle w,v\rangle

如果  w=0 则显然这个表达式也成立。
解2:也可以用  v 代替上面的  w 做同样的分析,设  e_1=v/|v| 并且  e_1,\dots,e_n 是标准正交基底,那么由于  Te_2=\dots=Te_n=0,则

 \mathrm{trace}\,T=\langle Te_1,e_1\rangle=\langle w,v\rangle

9 证明如果  P\in\mathcal L(V) 满足  P^2=P,那么  \mathrm{trace}\,P 是非负整数。
证明:由前几章习题知如果  P^2=P,那么  \mathrm{range},P\oplus\mathrm{null},P=V
 \mathrm{range},P \mathrm{null},P 中分别取基底,可以组成  V 的基底,并且由于在  \mathrm{range},P 中的每一个向量  v=Pu Pv=P^2u=Pu=v,从而在这组基底下  P 对应的矩阵是对角矩阵,其对角线上的元素只有 1 或 0,它们的和是个非负整数。

15 T\in\mathcal L(V),证明如果对任意  S\in\mathcal L(V) 都有  \mathrm{trace}\,ST=0,那么  T=0
证明: T 在某基底下的矩阵是  A,取  S 是在同样的基底下对应矩阵  A^H(共轭转置)的线性映射,那么显然
 \mathrm{trace}\,ST=\mathrm{trace}\,A^HA=\sum |a_{ij}|^2,由题设条件有  a_{ij}=0,故  T=0

(16题可以用15题的方法,也可用8题解答中用到的事实。17题应用16题结论,注意不等式右边等于  \mathrm{trace}\,T^*T,当选用标准正交基底使得  T 对应上三角矩阵时,可看出左边是小于等于  |Te_1|^2+\dots+|Te_n|^2 的。19题也可用16题的结论,并利用  \mathrm{trace}\,T^*T=\mathrm{trace}\,TT^*,证得  |T^*e_i|=|Te_i|,注意这是对任意标准正交基底都成立的,也就是把任意一个非零向量标准化并扩充成标准正交基底即可得  |T^*v|=|Tv|。)

18 V 是内积空间,证明  \langle S,T\rangle=\mathrm{trace}\,(ST^*) 定义了  \mathcal L(V) 上的内积。
证明:根据 16 题结论,可得  \langle T,T\rangle=\mathrm{trace}\,(TT^*)\ge 0 并且当且仅当  T=0 \langle T,T\rangle=0
由迹的性质,有  \langle S+W,T\rangle=\langle S,T\rangle+\langle W,T\rangle \langle kS,T\rangle=k\langle S,T\rangle 以及
 \langle S,T\rangle=\mathrm{trace}\,(ST^*)=\overline{\mathrm{trace}\,(TS^*)}=\overline{\langle T,S\rangle}
因此  \langle S,T\rangle=\mathrm{trace}\,(ST^*) 定义了  \mathcal L(V) 上的内积。

发表评论

电子邮件地址不会被公开。 必填项已用*标注