六、0.00...1是个什么数?

某些人仍然根据有限小数的经验,认为,0.99...不等于1。他们认为,0.99...虽然是无限小数,但是有最后一位,就是在无穷远处的那一位,因此0.9循环可以写成0.99...9,显然它与1差了0.00...1,小数点后无穷个0,最后跟了个1。
这种关于无限小数的想法当然是错误的。回忆一下在实数系中引进无限循环小数的目的和依据:有理数在实数中稠密(即处处都有,任何一个小区间里都有有理数), \left\{\frac{m}{10^n}|m,n\in\mathbb{Z}\right\}又在有理数中稠密,因此它在实数集中也稠密。因此我们可以用一个m/10^n形式有理数的数列去逼近任何的实数。因此我们的无限小数作为{m /10^n}数列的完成式,在小数点后面跟着的就是个由0-9数字组成的数列,它的每一项都跟自然数有一一对应的关系,而自然数根本就没有最后一项。可见,0.99...是无法写成0.99...9的。

那么,0.00...1是个什么数?
首先指出,它既不是有限小数,也不是我们平常所见的无限小数,因此它根本不是一个实数。
它不是个有限小数,这是显然的,因为小数点后面有无穷个0。那它为什么不是无限小数呢?前面已经说过,任何一个无限小数,后面的小数位按从左到右的顺序与自然数一一对应,任何一个小数位都对应一个有限的自然数。反观0.0...1,最后的那个1,不对应任何有限的自然数,前面的无限多个0就已经把所有自然数都对应完了。从小数运算规律来看的话,如果要把0.0...1与0.99...相加,那么0.99...中所有的9都与0.0...1中的0对应相加,0.0...1最后的那个1要加在哪一位呢?如果按无限小数对应实数的规则把它放在实数轴上,它要放在哪里呢?它非负,又小于所有形如 1/10^n的数,这样的数只有0。因此前面的无限多个0就已经决定了它只能是0了,后面的1对它的值来讲没有意义,没有存在的必要。

虽然在实数的范围内它是没有必要存在的表达式,但我们依然有必要从形式上讨论它,因为现在的数系发展早已经超越了实数,从一维的实数扩展到高维的复数、四元数等;从标准的实数扩展到了非标准的超实数、广义实数等。所以数的范围在扩大,概念并不唯一。在其它数系中是否可能有它的身影呢?我们最好先看看这个数的特征。
Continue reading

五、10X=9+X成立吗?

这是第二部分的开始,在这一部分里将接触到完完全全的无穷观念。无穷,因为充满神秘又扑朔迷离,所以它也就吸引了历史上大多数智慧头脑的兴趣,也引起了很多人的困惑和排斥。
下面进入正题:若X=0.99...,那么10X=9+X真的成立吗?

通常一些书上证明0.99...=1时是给出的这样的方式:
设0.99...=X,那么根据小数乘法的法则,一个小数乘以10小数点要向后移动一位,则
10X=9.99... (1)
但是因为0.999...为循环的,它有无穷多个9,小数点向后移动一位之后还是有无穷多个9,和以前一样都是无穷多个9在循环出现,因此应有
9.99...=9+0.99...=9+X (2)
故10X=9+X,得X=1.

有些人根据有限小数的经验,这样的反驳:虽然(1)式右边也是无限个9,但它是10*0.99...得到的,因为在0.99...基础上小数点向右移动一位才得到9.99...,所以(1)中的无限小数位数应为无穷大-1,比无穷大还少一个。虽然都是无穷大,但两个无穷大不一样。
如果你这样想,那么下面的论证你能解释吗?
1/3=0.3333...
10*0.3333...=3.333...
10*0.3333...=10/3=3+1/3=3.3333...
假设1/3的无限小数表示中循环的3的个数为k,那么在第二个式子中,用“小数点右移一位”得到3.333...的循环节3的出现次数为k-1,而在第三个式子中,把0.3333...转化为1/3,10*1/3=3+1/3,这个1/3,按前面的假设有循环3的为数为k,那么3+1/3小数点后也应该有k个3。
为什么同样的10*0.3333...,采用不同的计算方法得出循环节的个数不一样呢?难道跟计算途径有关吗?
Continue reading

四、和无限小数很类似的连分式和无穷层根号连环套

有的人认为,无限小数也是有最后一位的,只是最后一位是在无穷远处,我们看不到了。甚至认为0.33...的最后一位不是3。
这种想法让我想起了高中时的一段往事。
那时还没有学习极限, 就有这样的问题:求

\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}

 (1)
还有

\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}

 (2)
它们都是无限形式的式子,解决方法是列方程:对第一个式子,x=1/(1+x),对于第二个, x=\sqrt{1+x},每一个方程都有两个根,且都有一正一负,最后都把负的舍掉,以正值作为无限式的取值。
不过那时对老师的这种做法很有疑问:要说对于第二个式子,在实数中算术平方根总是正的,那么第一个式子为什么就一定是正的呢?如果它取负值,似乎也并没有什么矛盾。而且,简单地以第二个式子要取正值,就把负根舍掉,似乎比较牵强。万一两个都是正根呢?
能否出现两个正根的时候呢?故意找一个有两个正数根的二次方程,我也构造了一个类似的无穷形式:

\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}


这样列方程解出来的一个是2,一个是4,取那一个?把它们代入验证,都成立(那是当然的)。它到底是多少?这种式子不存在吗?为什么上面那个式子就合法存在,而这个就不行?
学了极限之后,我想到,这种无限延伸的式子应该就是一种极限。那么它是什么数列的极限呢?它们似乎是对某个数无穷次套根号或向上加无穷层分数线这个过程的一个最终结果了。它的发源地应该在无穷远的那一头,从无穷远的那一头,只有一个数的地方就是第一项,然后一次次地套上根号,一次一次地加上分数线,我们在无穷远的这头看到的只是最终的结果了,它的源头,它胎儿时期的形状已经看不见了。考虑

\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}


如果它胎儿时期是2,那么无论套多少次根号,总是2,如果胎儿时期是4,最后它也会是4。哦,跟初值有关!那么初值取其它值的时候这个式子又会是什么呢?可以证明,当初值取在[4/3,2)上时,经过有限次之后式子变得在实数中无意义;而当初值取大于2的任何值时,它最终是4,只有当初值为2时,它最终是2。(提示:可以在图像上看到这个迭代过程,在坐标系中画出f(x)=x和 g(x)=\sqrt{-8+6x}的图像,在坐标x0处,找到点(x0,g(x0)),从这一点平行于x轴做直线,与y=x相交于 (g(x0),g(x0)),再从这一点平行于y轴做直线,交g(x)图像于(g(x0),g(g(x0))),再向y=x做平行于x轴的直线...)
反过来思考上面的两个式子,不论初值取在哪一个正数,最后的结果都是一样的。而对于(1),初值取负数的时候是很有意思的。不妨自己分析一下。

上面的例子是否可以说明这样一个问题:对于一个无限的形式的表达式,如果单纯地认为它是一个数值,它可能是不确定的,而一旦我们从极限的角度分析,就会一下看到它的本质?

\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}


这样的,无穷远处的那个根号下的值已经无法影响到它的值了,我们可以放心大胆地说它的值就是(1+√5)/2,而对于

\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}


我们只能说它不确定了。
类比于0.99...,最后那一位数是什么对它的值有任何影响吗?

三、实数定义概要

  整数分数统称有理数,无限不循环小数称为无理数,有理数无理数统称实数,实数与数轴上的点是一一对应的。
中学课本中这么简单几句话,要想透彻地把这几句话解释清楚,却需要很多知识,中学生是没有机会和精力学习这些知识的,一个人要想把实数系统理解透彻,需要消耗大学里相当长的一段时间,而这些知识又对数学的应用和理论发展用处不大,因此一般的大学,即使是数学系的本科,也不会系统地教授这些东西,默认你已经承认实数的那些通常的性质了。
  我在大学里花了相当长的一段时间研究实数的这些基础理论,研究数学的公理化方法,研究公理集合论。大学本科毕业时是我自己选题,写了毕业论文“实数的定义与性质”总结前人在这方面的工作。而今,这些都已经逐渐远去,一些技术细节也基本上忘记了。更糟糕的是,自己的毕业论文竟然没有留住,丢失了,虽然记得大概思路,但那些处理的细节已经记不得了。不过好在技术的处理并不是那么难而且大多数结论都能在书上找到。
  今天也并不打算论述实数定义的细节,那需要的篇幅不是我能承受的,写那些东西对别人也没什么用,只是提供一个大体过程,还有一些我那时所看的书,如果哪位对这个东西特别感兴趣,你先做个预习,然后在你读大学并且很有时间的时候去找书吧。
Continue reading

二、实数中循环小数意义的补充说明

从这以后的连载系列内容都来自本人在百度帖吧的帖子。原帖地址:
http://tieba.baidu.com/f?kz=676219118

设a=0.33...(循环),它表示数轴上的哪一个点?我们在数轴上取这样一个线段序列:
首先,因为0<=a<=1,取第一段线段A1B1为0和1之间的线段[0,1];
然后,将A1B1十等分,看a的第一位小数,为3,那么取第二段线段A2B2为第三等分点和第四等分点之间的线段即[0.3,0.4]
再将A2B2十等分,看a的第二位小数,仍为3,那么取第三段线段A3B3仍然为第三等分点和第四等分点之间的线段即[0.33,0.34]
......
依此类推,得到一个线段序列AnBn,其中的任何一条线段都包含着下一条线段,并且随着n的增大线段长度可以达到任意小,与零无限接近。根据几何上的一些公理和性质(阿基米德公理和直线的完备性公理,其实也是实数的性质),在数轴上存在唯一一个点被所有线段覆盖,即存在唯一一个点在所有线段上,那么,0.33... (循环)就理所当然地应该表示这个点。容易证明,1/3就在所有线段上,因此0.33...(循环)就表示1/3。(从直觉上你也可以想象,如果0.33...(循环)能够表示一个点,那么它应该大于任何一个有限小数0.3333...33,而小于任何一个有限小数 0.33...34,即被我们做出的所有线段夹在中间,现在,恰好只有一个1/3就夹在中间。那么0.33...(循环)当然就表示1/3了。)
对于一般的一个正的无限小数a0.a1a2a3...,取A1B1为[a0,a0+1],将A1B1十等分,取A2B2为 [a0.a1,a0.a1+0.1],...,那么a0.a1a2a3...表示的是在所有AnBn线段上的唯一的那个点。(这里所说在线段上也包括线段的端点)

注意,0.33... (循环)应该表示的是1/3那个点,即使我们不做AnBn这些线段,0.33...(循环)表示的点依然是存在在数轴上的。0.33...(循环)既不是表示这些线段的序列,也不是表示这些线段的左端点序列,它就表示这些线段的交集:1/3那个点。那个点如果我们用3进制小数表示,只需要表示为0.1就可以了,如果用4进制小数,则表示为0.111循环,因为每次用4等分点划分线段时,它总是落在第一和第二等分点之间。

再看0.99循环这个数,依照上面的方法作出线段序列,看哪一个点在线段序列的所有线段上?显然,就是1。因此1有两种小数表示形式:1和0.999循环。因此0.999循环=1,是小数表示法的定义决定的。

上面无限小数的意义与我们通常所做的除法有什么关系呢?其实这个应该你自己去思考。这里略微提示:当1/3除不尽的时候,我们总是把余数添加一个0,而添加这个0就相当于把余数扩大为原来的十倍,这样下一位的商是什么意思呢?和我们上面讨论的把A1B1十等分有什么关系呢?
在做除法的每一步都时候,你都是得到了An,也就是得到的是上面讨论的线段的左端点,总是无法在有限的步骤里完全等于1/3,因此有人就认为无限循环小数无法准确表示1/3,但是错了,你每一步得到的只是左端点,只是个有限小数,当然无法完全等于1/3,但是0.33... (循环)却与这些左端点无关,他表示的是夹在所有An和 Bn之间的那个点,那就是1/3。