四元数的初步总结(二)

三、四元数乘法的性质与几何意义

四元数的乘法不满足交换律,比如, ij=-ji,jk=-kj,ik=-ki。但不是所有的四元数乘积在交换因子之后都变换符号,比如:
 (1+2i+3j+4k)(5+6i+7j+8k)=-60+12i+30j+24j

 (5+6i+7j+8k)(1+2i+3j+4k)=-60+20i+14j+32k
但是也不是所有的四元数都不遵循交换律,比如,
 (1+2i+3j+4k)(1-2i-3j-4k)=  (1-2i-3j-4k)(1+2i+3j+4k)=30

这个事情比较奇怪,两个四元数  p,q,它们不同顺序的乘积  pq qp 到底有什么关系呢?看一下刚才的三个例子,好像不管两个乘积是否相等,它们的实数部分都是相等的。
您可以再试验几个例子,看一看是不是这样,甚至可以编写一个计算四元数乘积的程序,尝试更多的例子,看一看两个乘积到底有什么关系。但是在我们讨论之后,事情就会比较明朗了。

Continue reading

四元数的初步总结(一)

前一阵子,以前公司的一位同事向我请教一段计算机图形程序中的算法,其中涉及齐次坐标和四元数。齐次坐标问题到好讲解,但四元数方面以前所知几乎为零。正好我看到齐民友在《复分析,可视化方法》译后记中提到的一本书:《高观点下的初等数学》([德]克莱因 著,以下简称《初等数学》)当中有一段讲到四元数,于是就细读了一遍,把这个专题的整理笔记写下来。

但是那本书里有很多结果依靠繁杂的机械运算,让人看了不知道这样的结果是怎么得出来的。因此我们这里用向量代数的观点重新审视四元数的一些结果,让四元数的特性看起来更直观,更自然。另外还有一些我认为重要的有关四元数引入的背景知识,例如数域的扩充问题的证明,那本书里只有一部分提示,这里也试着补全一些。

Continue reading

理解复数域上的向量空间(第一篇)

线性代数进行到酉空间中的自伴算子、正规算子以及谱定理这部分内容时,会发现很多在复空间中成立的命题在实空间中却未必成立。这种情况多少让人感到有点奇怪,为什么会出现这种情况?
复数域是包含实数域的,我们学习复数之后碰到最多的是相反的情况:原本在实数域上成立的性质在复数域中不一定成立了,比如,实数可以比较大小,但复数没有大小关系;又比如,实数的平方非负,等等。这样的命题见多了,容易使人产生思维定势,认为复数包含实数,因此在复数范围内成立的命题在实数范围内也必然成立,而实数范围成立的命题不一定都能推广到复数。
可尤其是学习到复变函数之后,这种情况似乎反过来了,同样的一个概念,到了复数中反倒比原来实数情况下的相应概念有了更多的内涵。这又是为什么呢?

比如,在"Linear Algebra Done Right" 第七章有个命题 7.2,是说

命题7.2:如果  V 是复数域上的内积空间,并且  T V 上的线性算子,且对任意向量  v,都有  \langle Tv,v\rangle=0,那么  T=0
证明:使用恒等式
 \begin{aligned}\langle Tu,w\rangle=&\frac{\langle T(u+w),u+w\rangle-\langle T(u-w),u-w\rangle}{4}\\ &+\frac{\langle T(u+iw),u+iw\rangle+\langle T(u-iw),u-iw\rangle}{4}i\end{aligned}
即可得证。

但是,同样的假设,在实数空间中却得不出同样的结论来,比如,二维空间中把所有向量都逆时针旋转90度角。

可是,在实空间中可以存在旋转90度的映射,为什么在复空间中就没有这种映射?难道就不可以有一个线性变换像实空间中那样把每一个向量都旋转到垂直的位置上吗?

Continue reading

上帝是一位算术家还是一位几何学家?(下)

──复数的引入对柏拉图主义的支持

如果在数学的逻辑基础问题上过于追究,则数学的人为因素越来越大。这并不奇怪,如果问“为什么”问到终结,则答案只能归结为“第一推动”了。
然而,不要忘了,数学所描述的对象并不是人们凭空想象出来的,一个没有多少实用和理论价值而人为捏造的理论系统最终会被淘汰。数学的理论还是要为现实服务的,即使不能马上或直接地应用到现实中,至少也要间接地为那些服务于现实的理论服务,或至少在未来有可能成为指导现实的模型。数学中的人为因素与客观因素的关系颇像作家写的小说:作家写的小说大部分是虚构的,但作家不可能不着边际天马行空地编造,小说描述的至少应当折射出现实的影子,达到一种虚构的现实。即使是神话故事,也不应当不合情理。因此,作家写小说,经常会感觉到情节已经不受自己控制了,就好像小说里写的人物都是活的,写的事情都是正在实时地发生着一样。

对于数学,也有一种观点:虽然数学的概念并不独立地存在于现实中,却是存在于某个客观的“理念世界”中的。是一种特殊的独立于现实世界之外的客观存在,它们是不依赖于时间、空间和人的思维的永恒的存在。数学家得到新的概念不是创造,而是对这种客观存在的描述;数学新成果不是发明,而是发现。[1] 这就是数学柏拉图主义观点。之所以叫柏拉图主义,因为柏拉图提出过一个哲学观点,称为“理念论”,他认为世界由“理念世界”和“现象世界”所组成。理念的世界是真实的存在,永恒不变,而人类感官所接触到的这个现实的世界,只不过是理念世界的微弱的影子,它由现象所组成,而每种现象是因时空等因素而表现出暂时变动等特征。有一个著名的洞穴比喻来解释理念论:有一群囚犯在一个洞穴中,他们手脚都被捆绑,身体也无法转身,只能背对着洞口。他们面前有一堵白墙,他们身后燃烧着一堆火。在那面白墙上他们看到了自己以及身后到火堆之间事物的影子,由于他们看不到任何其他东西,这群囚犯会以为影子就是真实的东西。最后,一个人挣脱了枷锁,并且摸索出了洞口。他第一次看到了真实的事物。他返回洞穴并试图向其他人解释,那些影子其实只是虚幻的事物,并向他们指明光明的道路。但是对于那些囚犯来说,那个人似乎比他逃出去之前更加愚蠢,并向他宣称,除了墙上的影子之外,世界上没有其他东西了。柏拉图利用这个故事来告诉我们,“形式”其实就是那阳光照耀下的实物,而我们的感官世界所能感受到的不过是那白墙上的影子而已。我们的大自然比起鲜明的理型世界来说,是黑暗而单调的。不懂哲学的人能看到的只是那些影子,而哲学家则在真理的阳光下看到外部事物。[2]

这种观点听上去有点玄,但为了解释数学研究,尤其是涉及那些表面上看来离我们遥远的数学概念如无穷大的研究意义,以及人为创造的概念为何又不以人的意志为转移,数学为何又可以精确地用于实践,这种观点是不可忽视的。

下面举两个可以有力地支持数学柏拉图主义观点的例子,都是关于复数的:[3]
Continue reading