点集拓扑要义(二)

(五)拓扑空间中的序列极限与集合聚点

极限是序列的极限,聚点是点集的聚点。但二者却有很大的联系,在欧氏空间或更一般的度量空间中,x 是一个点集的聚点,当且仅当在这个点集中可以取出一列收敛到 x 但每一项都不等于 x 的点列;如果 x 是一个序列的极限,并且这个序列中有无限多项不等于 x,那么 x 就是这个序列元素构成集合的聚点。
这一节试图充分讨论极限与聚点在一般的拓扑空间中的关系。

Continue reading

七、无穷真的客观存在吗?——芝诺悖论

数学上对于无穷的大量研究,使我们不禁要问:无穷在客观世界真的存在吗?
曾经人们认为宇宙的尺寸是无穷大的,但是现代的科学家普遍认为,宇宙也是有界的。那么凭我们的直觉,宇宙中的物质也很有可能是有限的。没有直接证据可以证明无穷大和无穷多的存在性。
无穷还可能有第三存在的状态:无穷小。那么无穷小是否客观存在?我们的空间是否无限可分?

芝诺悖论表明,这是最值得怀疑的。如果我们的时空无限可分,那么会有下面的芝诺悖论出现:
一位飞毛腿名叫阿基里斯。有一天他和一只乌龟赛跑,阿基里斯的速度是乌龟速度的10倍。阿基里斯的起跑线设在乌龟身后十米处,他们同时同向开跑。比赛开始时,乌龟在阿基里斯前方十米;当阿基里斯跑完这十米,乌龟向前跑了一米;当阿基里斯跑完这一米之后,乌龟又向前跑了0.1米,阿基里斯跑0.1米,乌龟向前跑0.01米,……如此下去,每当阿基里斯经过一段时间的追赶,跑到乌龟所在地的时候,乌龟在这段时间又向前跑了另一段距离。这个过程要经过无限步骤,因此阿基里斯追不上乌龟。这是芝诺的第一个悖论。
我们把乌龟作为参照物,就可以得到这样一个表述:一物体P要从A点移动到B点。它要首先从A点移动到AB的中点C1,然后再从C点移动到AC1中点 C2,到C2之后又要移动到AC2中点C3,……这样每到一个Cn之后又都有Cn+1等在前方。这个过程是无限的,因此P永远也到不了终点B。如果把B点看成任意的,那就意味着P不能从A点移动到任何一点,因此P的运动是不可能的。
事实上,我们把这一列点的顺序倒过来,就得到芝诺的另一个悖论:运动不可能。因为P从A点出发要移动到B,那它首先要移到AB终点C1,要移动到 C1,又要首先移动到AC1中点C2,……这样,P要从A移动到Cn必须先移动到ACn的中点Cn+1,这个要求是无限的。因此,P不可能动起来。
可以看到,只要假定时空无限可分,就会根据推理得到一个与事实不相符合的结果。
Continue reading

四、和无限小数很类似的连分式和无穷层根号连环套

有的人认为,无限小数也是有最后一位的,只是最后一位是在无穷远处,我们看不到了。甚至认为0.33…的最后一位不是3。
这种想法让我想起了高中时的一段往事。
那时还没有学习极限, 就有这样的问题:求
\[\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}\] (1)
还有
\[\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}\] (2)
它们都是无限形式的式子,解决方法是列方程:对第一个式子,x=1/(1+x),对于第二个,\( x=\sqrt{1+x}\),每一个方程都有两个根,且都有一正一负,最后都把负的舍掉,以正值作为无限式的取值。
不过那时对老师的这种做法很有疑问:要说对于第二个式子,在实数中算术平方根总是正的,那么第一个式子为什么就一定是正的呢?如果它取负值,似乎也并没有什么矛盾。而且,简单地以第二个式子要取正值,就把负根舍掉,似乎比较牵强。万一两个都是正根呢?
能否出现两个正根的时候呢?故意找一个有两个正数根的二次方程,我也构造了一个类似的无穷形式:
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
这样列方程解出来的一个是2,一个是4,取那一个?把它们代入验证,都成立(那是当然的)。它到底是多少?这种式子不存在吗?为什么上面那个式子就合法存在,而这个就不行?
学了极限之后,我想到,这种无限延伸的式子应该就是一种极限。那么它是什么数列的极限呢?它们似乎是对某个数无穷次套根号或向上加无穷层分数线这个过程的一个最终结果了。它的发源地应该在无穷远的那一头,从无穷远的那一头,只有一个数的地方就是第一项,然后一次次地套上根号,一次一次地加上分数线,我们在无穷远的这头看到的只是最终的结果了,它的源头,它胎儿时期的形状已经看不见了。考虑
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
如果它胎儿时期是2,那么无论套多少次根号,总是2,如果胎儿时期是4,最后它也会是4。哦,跟初值有关!那么初值取其它值的时候这个式子又会是什么呢?可以证明,当初值取在[4/3,2)上时,经过有限次之后式子变得在实数中无意义;而当初值取大于2的任何值时,它最终是4,只有当初值为2时,它最终是2。(提示:可以在图像上看到这个迭代过程,在坐标系中画出f(x)=x和\( g(x)=\sqrt{-8+6x}\)的图像,在坐标x0处,找到点(x0,g(x0)),从这一点平行于x轴做直线,与y=x相交于 (g(x0),g(x0)),再从这一点平行于y轴做直线,交g(x)图像于(g(x0),g(g(x0))),再向y=x做平行于x轴的直线…)
反过来思考上面的两个式子,不论初值取在哪一个正数,最后的结果都是一样的。而对于(1),初值取负数的时候是很有意思的。不妨自己分析一下。

上面的例子是否可以说明这样一个问题:对于一个无限的形式的表达式,如果单纯地认为它是一个数值,它可能是不确定的,而一旦我们从极限的角度分析,就会一下看到它的本质?

\[\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}\]
这样的,无穷远处的那个根号下的值已经无法影响到它的值了,我们可以放心大胆地说它的值就是(1+√5)/2,而对于
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
我们只能说它不确定了。
类比于0.99…,最后那一位数是什么对它的值有任何影响吗?