四元数的初步总结(一)

前一阵子,以前公司的一位同事向我请教一段计算机图形程序中的算法,其中涉及齐次坐标和四元数。齐次坐标问题到好讲解,但四元数方面以前所知几乎为零。正好我看到齐民友在《复分析,可视化方法》译后记中提到的一本书:《高观点下的初等数学》([德]克莱因 著,以下简称《初等数学》)当中有一段讲到四元数,于是就细读了一遍,把这个专题的整理笔记写下来。

但是那本书里有很多结果依靠繁杂的机械运算,让人看了不知道这样的结果是怎么得出来的。因此我们这里用向量代数的观点重新审视四元数的一些结果,让四元数的特性看起来更直观,更自然。另外还有一些我认为重要的有关四元数引入的背景知识,例如数域的扩充问题的证明,那本书里只有一部分提示,这里也试着补全一些。

Continue reading

为了尽快恢复功力,复习数学分析

用了半个月左右的时间粗浅地略读了《复分析,可视化方法》的前十一章,当然略去了所有加星号的内容和所有习题。整体的感觉是,四两拨千斤,比较精彩,很多以前不知道的问题现在茅塞顿开。但是有些地方的处理方式实在谈不上严格,以至于我在读到某些地方时不由得心存狐疑,他这种演绎发展数学的方式真的能有可靠的结果吗?

Continue reading

指数函数 exp(x) 导数的直接求法

在我读高中的时候,数学课程里是没有微积分的,当时自学微积分,用的是一种很简明的数学手册,里面只有结果没有证明。看到指数函数求导的时候,怎么也想不明白这个 \( y=e^x\) 的导数 \( y’=e^x\) 是怎么求出来的。

在当时那个信息闭塞的时代,我没有办法直接找到问题的答案,所有的证明都得依靠自己努力思考,才能使很多问题的证明在一定程度上得以补全,这其中包括指数函数求导、牛顿-莱布尼茨公式、反正切函数的泰勒展式等等,都是通过自己的思考来做出的所谓的”证明”,当然都是不严格的,但大多数只缺少其中的某个环节罢了,比如 \( \arctan x=x-\frac{x^3}{3}+\frac{x^5}{5}-\dots\),当时想到了两边同时求导,只是对两个重要的环节苦思不解:幂级数逐项积分的合理性和 \( x=1\) 时怎么证明右边还等于左边。

Continue reading

理解复数域上的向量空间(第一篇)

线性代数进行到酉空间中的自伴算子、正规算子以及谱定理这部分内容时,会发现很多在复空间中成立的命题在实空间中却未必成立。这种情况多少让人感到有点奇怪,为什么会出现这种情况?
复数域是包含实数域的,我们学习复数之后碰到最多的是相反的情况:原本在实数域上成立的性质在复数域中不一定成立了,比如,实数可以比较大小,但复数没有大小关系;又比如,实数的平方非负,等等。这样的命题见多了,容易使人产生思维定势,认为复数包含实数,因此在复数范围内成立的命题在实数范围内也必然成立,而实数范围成立的命题不一定都能推广到复数。
可尤其是学习到复变函数之后,这种情况似乎反过来了,同样的一个概念,到了复数中反倒比原来实数情况下的相应概念有了更多的内涵。这又是为什么呢?

比如,在”Linear Algebra Done Right” 第七章有个命题 7.2,是说

命题7.2:如果 \( V\) 是复数域上的内积空间,并且 \( T\) 是 \( V\) 上的线性算子,且对任意向量 \( v\),都有 \( \langle Tv,v\rangle=0\),那么 \( T=0\)。
证明:使用恒等式
\( \begin{aligned}\langle Tu,w\rangle=&\frac{\langle T(u+w),u+w\rangle-\langle T(u-w),u-w\rangle}{4}\\ &+\frac{\langle T(u+iw),u+iw\rangle+\langle T(u-iw),u-iw\rangle}{4}i\end{aligned}\)
即可得证。

但是,同样的假设,在实数空间中却得不出同样的结论来,比如,二维空间中把所有向量都逆时针旋转90度角。

可是,在实空间中可以存在旋转90度的映射,为什么在复空间中就没有这种映射?难道就不可以有一个线性变换像实空间中那样把每一个向量都旋转到垂直的位置上吗?

Continue reading

理解矩阵与矩阵乘积(三)

四、线性映射的复合

我们已经定义了行向量与列向量的乘法和矩阵与列向量的乘法,现在还差矩阵与矩阵的乘法没有定义。而矩阵与矩阵的乘法要与线性映射的复合联系起来。

设 \( U\)、\( V\) 和 \( W\) 分别为 r 维、n 维、m 维向量空间。\( g\) 和 \( f\) 分别是 \( U\) 到 \( V\) 和 \( V\) 到 \( W\) 的线性映射,那么易证两个线性映射的复合 \( f\circ g\) 也是线性映射。

取三个向量空间的基底,那么三个向量空间就有了坐标系统,如果知道了 \( f\) 和 \( g\) 在坐标系统下的表达式,即按前面所述,知道了它们对应的矩阵:\( f(v)=Av\),\( g(u)=Bu\),其中 \( A\) 为 \( m\times n\) 阶矩阵,\( B\) 为 \( n\times r\) 阶矩阵,那么 \( f\circ g\) 对应的矩阵是什么呢?

依据直观的推导,\( f\circ g(u)=f(Bu)=A(Bu)=ABu\),好像 \( f\circ g\) 对应的矩阵就是 \( A,B\) 两个矩阵的乘积,但是,我们目前并没有定义它们的乘积是什么,所以最后一个等号目前来讲还是没有意义的。

那么,我们就以求两个线性映射的复合映射所对应的矩阵为目的,定义两个线性映射的复合所对应的矩阵就是这两个映射对应矩阵的乘积,那么这个乘积如何来求呢?

Continue reading