理解复数域上的向量空间(第一篇)

线性代数进行到酉空间中的自伴算子、正规算子以及谱定理这部分内容时,会发现很多在复空间中成立的命题在实空间中却未必成立。这种情况多少让人感到有点奇怪,为什么会出现这种情况?
复数域是包含实数域的,我们学习复数之后碰到最多的是相反的情况:原本在实数域上成立的性质在复数域中不一定成立了,比如,实数可以比较大小,但复数没有大小关系;又比如,实数的平方非负,等等。这样的命题见多了,容易使人产生思维定势,认为复数包含实数,因此在复数范围内成立的命题在实数范围内也必然成立,而实数范围成立的命题不一定都能推广到复数。
可尤其是学习到复变函数之后,这种情况似乎反过来了,同样的一个概念,到了复数中反倒比原来实数情况下的相应概念有了更多的内涵。这又是为什么呢?

比如,在”Linear Algebra Done Right” 第七章有个命题 7.2,是说

命题7.2:如果 \( V\) 是复数域上的内积空间,并且 \( T\) 是 \( V\) 上的线性算子,且对任意向量 \( v\),都有 \( \langle Tv,v\rangle=0\),那么 \( T=0\)。
证明:使用恒等式
\( \begin{aligned}\langle Tu,w\rangle=&\frac{\langle T(u+w),u+w\rangle-\langle T(u-w),u-w\rangle}{4}\\ &+\frac{\langle T(u+iw),u+iw\rangle+\langle T(u-iw),u-iw\rangle}{4}i\end{aligned}\)
即可得证。

但是,同样的假设,在实数空间中却得不出同样的结论来,比如,二维空间中把所有向量都逆时针旋转90度角。

可是,在实空间中可以存在旋转90度的映射,为什么在复空间中就没有这种映射?难道就不可以有一个线性变换像实空间中那样把每一个向量都旋转到垂直的位置上吗?

Continue reading