用超限归纳法证明《实变函数论》中另一命题

为了建立实数轴上的 Lebesgue 测度,首先需要找一个适当的集合环,在上面建立起满足可数可加性的测度。因此,通常是在环 \[\mathscr R_0=\left\{\bigcup_{i=1}^n(a_i,b_i]\,|\,a_i,b_i\in\mathbf R,i=1,2,\dots,n \right\}\] 上定义集合函数 \[m(E)=\sum_{i=1}^n(b_i-a_i)\] 其中区间 \((a_i,b_i]\) 为 E 的初等分解。

《实变函数论》中在证明了这个定义的合理性(即 E 的函数值与 E 的初等分解方式无关)之后,作者通过134页(2009清华版124页)引理2.3.2 证明了这个集合函数的一系列性质,包括有限可加性,单调性和有限次可加性,最后证明这个集合函数是环 \(\mathscr R_0\) 上的测度,即满足空集的函数值为0;此函数非负,且具有可数可加性。

应该说,引理2.3.2 论证的内容是十分直观的,因为环 \(\mathscr R_0\) 上的元素都十分简单,只是有限个左开右闭区间的并。而引理2.3.2的核心内容无非是说,可数多个互不相交的左开右闭区间的总长度,是这些区间长度的和。比如,我们高中理解等比数列和 \[\sum_{n=1}^{\infty}\frac{1}{2^n}=1\] 的时候,就是把单位线段无限地二等分,然后看到单位线段的长度等于这些小线段的总长度,这是多么直观的事情。但引理2.3.2的建立过程却非常曲折,为了证明所定义的函数是测度,引理2.3.2被分解成了四个部分,最后一个部分还用到了 Heine-Borel 有限覆盖定理,而这个定理应用的也是极不自然,因为,这里并不是一些开集覆盖住了一个有界闭集,为了应用有限覆盖定理,还必须得给每个区间做一些小手术,这是不容易想得到的。

有没有可能就像高中证明那个无限二分线段长度之和为1那样直接证明这个命题?就是通过有限可加性取极限,就能直接得到可数可加性?用通常的分析思想会有些困难,因为,这里讨论的是可数无限分割,而这种分割的结构可以相当复杂。比如,就在一个简单的连续区间里,这种分划点的极限点就可以有很多甚至无限多,而这些极限点又可能有极限点的极限点,比如上面那个分划的每一个小区间 \( (\frac{1}{2^n},\frac{1}{2^{n+1}}]\) 中又可以有可数多个小区间,因此想用取极限的方式去证明一般的命题,有可能需要考虑极限的极限,而且嵌套无穷多次。

Continue reading

徐森林《实变函数论》中有关超限归纳法的一处疏漏

我想趁着假期的时候多复习些内容,所以现在有几门功课正在齐头并进,以便于在一门功课看累了的时候可以换换主题。这其中有实变函数,用的是徐森林的《实变函数论》中科大2002年版。

这本书第68页定理1.5.7(对应于2009清华版59页定理1.4.6):”布莱尔集与实数集等势”的证明过程中,用到了超限归纳法。作者首先以实数集为基础,构造良序集 \(A\),以便有足够多的序数对 \(\mathscr R\) 向 \(\mathscr R_\sigma(\mathscr R)\) 扩充的无限过程编号。\(A\) 实际上等同于最小的不可数序数之前的所有序数构成的集合,即所有可数序数构成的集合。(对于序数的直观描述可参见本博客文章《0.00…1是个什么数?》 打开连接之后在页内搜索”序数”)有意思的是,\(A\) 中任意一个元素,前面都只有可数多个元素,但 \(A\) 本身却是不可数的。这有点类似于自然数集 \(\mathbf N\),任意一个自然数都是有限的,但自然数集本身却是无限的。当然,可数序数和有限序数都没有最大元。

有了合适的序数集,作者便用递归的方式,通过差运算和可数并运算将 \(\mathscr R\) 一步步向 \(\mathscr R_\sigma(\mathscr R)\) 扩充。第0步,\(\mathscr R_{a_0}=\mathscr R\)。假设第 \(\lambda\in A\) 步已经完成,那么在第 \(\lambda +1\) 步,令 \[\mathscr R_{\lambda+1}=\left\{\bigcup_{i=1}^{\infty}E_i, E_2-E_1\,|\, E_i\in \mathscr R_\lambda, i=1,2,\dots\right\}\] 则作者认为对于每一个 \(a\in A, \mathscr R_a\) 都定义好了。

我认为,实际上这个递归定义的结果,最多是对于所有的有限序数,即自然数 \(n\) 定义好了 \(\mathscr R_n\),而无法遍历 \(A\) 中所有的可数序数。因为我们知道,不是所有的序数都是另一个序数的后继,比如第一个无限序数 \(\omega\) 就不是任何一个序数的后继,这样的序数称为超越序数。而 \(A\) 是个不可数集合,其中无法避免地会出现超越序数。

因此,我把上面的定义过程修改如下:

Continue reading

六、0.00…1是个什么数?

某些人仍然根据有限小数的经验,认为,0.99…不等于1。他们认为,0.99…虽然是无限小数,但是有最后一位,就是在无穷远处的那一位,因此0.9循环可以写成0.99…9,显然它与1差了0.00…1,小数点后无穷个0,最后跟了个1。
这种关于无限小数的想法当然是错误的。回忆一下在实数系中引进无限循环小数的目的和依据:有理数在实数中稠密(即处处都有,任何一个小区间里都有有理数),\( \left\{\frac{m}{10^n}|m,n\in\mathbb{Z}\right\}\)又在有理数中稠密,因此它在实数集中也稠密。因此我们可以用一个m/10^n形式有理数的数列去逼近任何的实数。因此我们的无限小数作为{m /10^n}数列的完成式,在小数点后面跟着的就是个由0-9数字组成的数列,它的每一项都跟自然数有一一对应的关系,而自然数根本就没有最后一项。可见,0.99…是无法写成0.99…9的。

那么,0.00…1是个什么数?
首先指出,它既不是有限小数,也不是我们平常所见的无限小数,因此它根本不是一个实数。
它不是个有限小数,这是显然的,因为小数点后面有无穷个0。那它为什么不是无限小数呢?前面已经说过,任何一个无限小数,后面的小数位按从左到右的顺序与自然数一一对应,任何一个小数位都对应一个有限的自然数。反观0.0…1,最后的那个1,不对应任何有限的自然数,前面的无限多个0就已经把所有自然数都对应完了。从小数运算规律来看的话,如果要把0.0…1与0.99…相加,那么0.99…中所有的9都与0.0…1中的0对应相加,0.0…1最后的那个1要加在哪一位呢?如果按无限小数对应实数的规则把它放在实数轴上,它要放在哪里呢?它非负,又小于所有形如 1/10^n的数,这样的数只有0。因此前面的无限多个0就已经决定了它只能是0了,后面的1对它的值来讲没有意义,没有存在的必要。

虽然在实数的范围内它是没有必要存在的表达式,但我们依然有必要从形式上讨论它,因为现在的数系发展早已经超越了实数,从一维的实数扩展到高维的复数、四元数等;从标准的实数扩展到了非标准的超实数、广义实数等。所以数的范围在扩大,概念并不唯一。在其它数系中是否可能有它的身影呢?我们最好先看看这个数的特征。
Continue reading