所谓的范数,就是向量长度这个概念在一般向量空间中的推广。简单地讲就是从向量空间 \( V\) 到数域 \( \mathbf{F}\) 的一个函数 \( |\cdot|\),满足如下条件:
1) \( \forall v\in V,|v|\ge 0\),并且 \( |v|=0\) 当且仅当 \( v=0\)。
2) \( |av|=|a| |v|\)
3) \( |u+v|\le |u|+|v|\)
在一个内积空间中,由内积表达式 \( \sqrt{\langle v,v\rangle}\) 就可以定义出一个范数,这个范数称为由内积诱导的范数。
不是所有的范数都是由内积诱导出来的。例如,在 \( \mathbb{R}^2\) 中,定义范数 \( |(x,y)|=|x|+|y|\),它确实是范数但没有内积可以诱导出这个范数。因为,内积诱导的范数满足平行四边形法则: \[ |u+v|^2+|u-v|^2=2|u|^2+2|v|^2\] 即平行四边形四边的平方和等于两对角线的平方和。而上面举的例子显然不满足这个特性。
那么是不是一个范数只要满足平行四边形法则,它就必然是由某个内积诱导出来的呢?答案是肯定的。证明见下面。
那么平行四边形法则到底是什么东西?为什么有这么大的魔力,使它成为一个范数是否有内积背景的唯一门槛?