有的人认为,无限小数也是有最后一位的,只是最后一位是在无穷远处,我们看不到了。甚至认为0.33…的最后一位不是3。
这种想法让我想起了高中时的一段往事。
那时还没有学习极限, 就有这样的问题:求
\[\frac{1}{1+\frac{1}{1+\frac{1}{1+\dots}}}\] (1)
还有
\[\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}\] (2)
它们都是无限形式的式子,解决方法是列方程:对第一个式子,x=1/(1+x),对于第二个,\( x=\sqrt{1+x}\),每一个方程都有两个根,且都有一正一负,最后都把负的舍掉,以正值作为无限式的取值。
不过那时对老师的这种做法很有疑问:要说对于第二个式子,在实数中算术平方根总是正的,那么第一个式子为什么就一定是正的呢?如果它取负值,似乎也并没有什么矛盾。而且,简单地以第二个式子要取正值,就把负根舍掉,似乎比较牵强。万一两个都是正根呢?
能否出现两个正根的时候呢?故意找一个有两个正数根的二次方程,我也构造了一个类似的无穷形式:
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
这样列方程解出来的一个是2,一个是4,取那一个?把它们代入验证,都成立(那是当然的)。它到底是多少?这种式子不存在吗?为什么上面那个式子就合法存在,而这个就不行?
学了极限之后,我想到,这种无限延伸的式子应该就是一种极限。那么它是什么数列的极限呢?它们似乎是对某个数无穷次套根号或向上加无穷层分数线这个过程的一个最终结果了。它的发源地应该在无穷远的那一头,从无穷远的那一头,只有一个数的地方就是第一项,然后一次次地套上根号,一次一次地加上分数线,我们在无穷远的这头看到的只是最终的结果了,它的源头,它胎儿时期的形状已经看不见了。考虑
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
如果它胎儿时期是2,那么无论套多少次根号,总是2,如果胎儿时期是4,最后它也会是4。哦,跟初值有关!那么初值取其它值的时候这个式子又会是什么呢?可以证明,当初值取在[4/3,2)上时,经过有限次之后式子变得在实数中无意义;而当初值取大于2的任何值时,它最终是4,只有当初值为2时,它最终是2。(提示:可以在图像上看到这个迭代过程,在坐标系中画出f(x)=x和\( g(x)=\sqrt{-8+6x}\)的图像,在坐标x0处,找到点(x0,g(x0)),从这一点平行于x轴做直线,与y=x相交于 (g(x0),g(x0)),再从这一点平行于y轴做直线,交g(x)图像于(g(x0),g(g(x0))),再向y=x做平行于x轴的直线…)
反过来思考上面的两个式子,不论初值取在哪一个正数,最后的结果都是一样的。而对于(1),初值取负数的时候是很有意思的。不妨自己分析一下。
上面的例子是否可以说明这样一个问题:对于一个无限的形式的表达式,如果单纯地认为它是一个数值,它可能是不确定的,而一旦我们从极限的角度分析,就会一下看到它的本质?
像
\[\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}\]
这样的,无穷远处的那个根号下的值已经无法影响到它的值了,我们可以放心大胆地说它的值就是(1+√5)/2,而对于
\[\sqrt{-8+6\sqrt{-8+6\sqrt{-8+\cdots}}}\]
我们只能说它不确定了。
类比于0.99…,最后那一位数是什么对它的值有任何影响吗?