Linear Algebra Done Right第二章注记和部分习题

注记部分:

1 线性无关和子空间直和的联系

线性无关概念和子空间直和的概念有着很密切的联系,如下:

1)二者的概念同源,都是要将一个大的空间的向量唯一地分解成若干小的子空间中向量的和。
2)v1,v2,…,vn线性无关的充要条件是v1,v2,…,vn都不等于0且span(v1),span(v2),…,span(vn)的和是直和。
3)设有若干组向量:向量组u1,u2,…,ur,向量组v1,v2,…,vs,和向量组w1,w2,…,wt,每一组向量都线性无关,把它们放在一起还是线性无关吗?这显然是不一定的。但是怎样才能保证把它们放在一起也线性无关呢?有以下两个结果:
a)向量组u1,u2,…,ur,向量组v1,v2,…,vs,和向量组w1,w2,…,wt,每一组向量都线性无关,则向量组u1,…,ur,v1,…,vs,w1,…,wt线性无关当且仅当span(u1,u2,…,ur)+span(v1,v2,…,vs)+span(w1,w2,…,wt)是直和。
b)若U1+U2+…+Un是直和,那么分别从U1,U2,…,Un每个子空间中任意选出一组线性无关的向量,它们整体还是线性无关的。
可以说a)就是直和空间的维数定理和逆定理。但利用零向量的唯一分解性质也可以很容易地证明上述两个命题。

2 33页定理2.18(dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2))的证明思路问题

此定理很自然的思路是寻找各个子空间基底所包含向量的个数关系。因此前半部分比较自然,寻找U1 ∩ U2的基底u1, . . . , um,添加向量v1, . . . , vj使u1, . . . , um,v1, . . . , vj成为U1的基底,再添加w1, . . . , wk使u1, . . . , um,w1, . . . , wk成为U2的基底。
但在证明(u1, . . . , um, v1, . . . , vj,w1, . . . , wk)线性无关的过程中,设
a1u1 + ··· + amum + b1v1 + ··· + bjvj + c1w1 +· · ·+ckwk = 0
之后,怎么能想到要把c1w1 +· · ·+ckwk 和其它向量分别放在等式两边呢?

有了上一条注记中的两个命题a)和b),这个思路就比较明朗,证明多组线性无关的向量放在一起也是线性无关的,无非就是证明span(w1,w2,…,wk)+span(u1,u2,…,um)+span(v1,v2,…,vj)是直和。因为已知w1,…,wk,u1,…,um线性无关,只需证明span(w1,w2,…,wk,u1,u2,…,um) ∩span(v1,v2,…,vj)={0}(见第一章注记)
这就是把c1w1 +· · ·+ckwk放在等式另一边的证明思路。

如果一个人不知道此定理,现在要着手证明这个定理,他会是怎样的思路呢?
首先,他会先考虑两个子空间交于{0}的简单情形,并证明直和的维数等于维数的和,证法见上条评注中的命题a)。接着,考虑两个子空间的交集维数大于等于1的情形,他会考虑把U1+U2分解成几个子空间的直和,很自然的想法就是考虑U1 ∩ U2、U1去掉U1 ∩ U2的那一部分,和U2去掉U1 ∩ U2的那一部分应该可以构成直和(即找两个子空间W,V使得W+U1 ∩ U2=U1, V+U1 ∩ U2=U2,那么应有W⊕U1 ∩ U2⊕V=U1+U2)。
这就是整个证明的思路。证明过后又发现没有必要事先单独证明直和的情形了,因此把直和的维数定理作为此定理的推论。

3 维数定理和有限集合基数定理(容斥原理)

这部分论述见文章《子空间和的维数定理与容斥原理》

部分习题解答:

(略)