定理1(隐函数定理):设二元函数 \( F(x,y)\) 满足
i) \( F(x_0,y_0)=0\)
ii) \( F(x,y)\) 与 \( F_y(x,y)\) 在 \( (x_0,y_0)\) 的某个邻域内连续
iii) \( F_y(x_0,y_0)\not=0\)
则存在 \( \delta,\eta>0\) 和唯一的定义于 \( (x_0-\delta,x_0+\delta)\) 取值于 \( (y_0-\eta,y_0+\eta)\) 的函数 \( y=y(x)\) 满足
1) \( y_0=y(x_0)\),\( F(x,y(x))=0,\forall xin(x_0-\delta,x_0+\delta)\)
2) \( y(x)\) 在 \( (x_0-\delta,x_0+\delta)\) 内连续
进一步地,如果
iv) \( F_x(x,y)\) 也在 \( (x_0,y_0)\) 的一个邻域内连续,则上述的 \( y=y(x)\) 在 \( x_0\) 的一个邻域内一阶导数连续,且
\[ y'(x)=-\frac{F_x(x,y(x))}{F_y(x,y(x))}\]
这就是南开大学《数学分析》(黄玉民,李成章 编)下册中隐函数定理的二元函数情形。而在某些教材上,只讨论了 \( F\) 在 \( (x_0,y_0)\) 的某个邻域内连续可微的情形,如张筑生版的《数学分析新讲》。